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Diffraction of shock waves by a moving thin wing 

By L. TING AND M. GUNZBURGER 
New York University, Bronx, N.Y. 

(Received 19 November 1969) 

An analytical solution is obtained for the flow field due to the impinging of a 
plane shock wave of arbitrary strength by a thin wing moving in the opposite 
direction. The planform and the thickness distribution of the wing can be 
arbitrary and the speed of the wing can be either supersonic or subsonic relative 
to the undisturbed stream ahead of the shock or to that behind the shock. The 
solution is a generalization of the previous solution of Ting & Ludloff for the 
diffraction of shock wave by a two-dimensional stationary airfoil to a three- 
dimensional wing moving with supersonic or subsonic speed relative to the 
stream ahead of or behind the shock. The solution is employed for the analysis 
of the changes in aerodynamic forces when an airplane encounters a blast wave 
or a shock wave of another airplane. It is also used to study the diffraction of 
a shock wave or an N-wave advancing over flat terrains. 

1. Introduction 
The variations in aerodynamic forces on an airplane, when it encounters 

a shock wave due to an explosion or that of another vehicle nearby, are of 
practical interest (figure 1 (a)). The problem of the diffraction of a shock wave 
or an N-wave advancing over a flat terrain is an area of interest in the current 
sonic boom investigations (figure 1 ( b ) ) .  The second problem can be considered 
as a special case of the first one, i.e. the diffraction of a shock wave advancing 
over a stationary symmetric thin wing. In this paper, analytical solutions for 
both problems are presented. 

The solution for the conical flow field due to the diffraction of a shock wave 
advancing over a stationary thin wedge was obtained by Lighthill (1949). 
Extension to stationary wedges at  yaw and to wedges moving head on with 
supersonic speed were obtained by Chester (1954) and by Smyrl (1963), respec- 
tively. Additional conical solutions have been developed by Blankenship ( 1965) 
for the diffraction of a shock wave by a slender cone moving with supersonic 
speed and by Ter-Minassiants (1969) for the diffraction of an oblique shock wave 
and its regular reflected wave by a small corner. 

The solution for the diffraction of a shock wave by any stationary two- 
dimensional symmetric thin airfoil was obtained by Ting & Ludloff (1952) 
directly as a solution of the two-dimensional wave equation. The same method 
was applied to astationary slender axially symmetric body by Ludloff & Friedman 
(1952). The boundary condition for the disturbance pressure p' on the airfoil or 
the body behind the shock was fulfilled by an appropriate source distribution. 
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The homogeneous boundary condition across the shock, DZtp' = 0, is replaced 
by an equivalent boundary condition or a fictitious source distribution on the 
plane of the wing or along the axis of the body ahead of the shock. The fictitious 
source distribution is related to the given source distribution behind the shock 

Ground 

(b) 
FIGURE 1. Diffraction problems: (a)  diffraction of shock by a moving wing, 

(b )  shock wave advancing over a flat terrain. 

by a linear transform of the independent variables. The final solution is given 
by the known integral solution for unsteady linear source distributions. 

Following the formulation of Ting & Ludloff (1952), Arora obtained analytic 
solutions for the diffraction of a shock wave by a slender body (1968) and by 
a planar symmetric thin wing (1969). The solutions of Arora, which were ob- 
tained by a different procedure using Laplace and Fourier transforms, can again 
be recognized asintegral solutions of unsteady axial or planar source distributions. 
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In  the present paper, the procedure used by Ting & Ludloff (1952) is extended 
to the unsteady three-dimensional problem, i.e. the diffraction of a shock wave 
by a moving planar symmetric thin wing. The governing differential equations 
and the boundary conditions are formulated in 9 2. The shock condition is now 
of the form D,,p’ = KC2pA,zoz., where C is the speed of sound behind the shock. 

The inhomogeneous term is due to the disturbed pressure pA created ahead 
of the shock by the moving wing. The pressure &, is given by a steady flow 
solution without the shock and with the speed of sound the same as that of the 
stream ahead of the shock, C,. In  the appendix, a steady solution for an equivalent 
wing moving in a stream without a shock and with the speed of sound C can be 
found so that the corresponding disturbance pressure p* creates the same in- 
homogeneous term in the shockcondition, i.e. D,,p* = KC2&, zozo. The difference 
between the disturbance pressure behind the shock, p’, and p* obeys the homo- 
geneous shock condition and is obtained in $ 3 by an extension of the procedure 
of Ting & Ludloff (1952). The complete analytic solution is given in $ 4  to- 
gether with a list of the relevant symbols. A physical interpretation of the 
individual terms in the solution as integral solutions for moving planar source 
distributions is also presented. In $ 5 the analytical solution is reduced to a sum 
of ‘quasi-steady ’ three-dimensional solutions, so that it is easier to carry out 
the integrations for a given wing. Furthermore, from the planform of the wing, 
a domain of influence of the shock can be defined, and outside that domain the 
analytic solution can be reduced to the sum of at most two steady three-dimen- 
sional solutions. In $6,  the integrals are evaluated for a simple semi-infinite 
swept back wing so that explicit solutions are presented. By the superposition 
of these explicit solutions, solutions for wings with complicated planforms and 
thickness distributions can be obtained in the same manner as in the steady 
flow problems (Donovan & Lawrence 1957). Several numerical examples are 
included, e.g. the diffraction of a shock wave by a flat terrain in the shape of 
a pyramid and the variation of the lift and drag of a triangular wing with super- 
sonic edges impinging on a shock wave. 

It should be pointed out here that the solutions of Smyrl (1963) and Arora 
(1968, 1969) are restricted to bodies or wings moving at supersonic speed relative 
to the flow ahead of the shock. The analytic solution presented in this paper is 
valid regardless of whether the wing is moving at  supersonic or subsonic speed 
relative to the stream ahead of or behind the shock. 

2. Formulation of the problem 
Figure 1 (a)  shows a thin wing lying in the x-z plane and impinging head on to 

a plane shock wave moving in the direction of the x-axis. The undisturbed flow 
ahead of the shock is at  rest with pressure Po, density po and speed of sound C,, 
or (yPo/po)*. The shock front is advancing with velocity U, and the undisturbed 
uniform stream behind the shock is moving with velocity Uo - U, pressure P and 
density p and speed of sound C or (yP/p)*. Relative to the shock front the Mach 
number ahead of the shock, No = Uo/Co and that behind the shock, M = UlC, 
are related by the normal shock condition (Liepman & Roshko 1957) with 
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Mo > 1 and M < 1. Likewise the pressure ratio, density ratio and the ratio of 
speed of sounds are related to M, or M (Liepman & Roshko 1957). 

The thin wing is moving in the direction of the negative x-axis with velocity 
U, relative to the undisturbed stream ahead of the shock. The velooity U, can 
be supersonic or subsonic relative to C,. The velocity of the wing relative to the 
undisturbed stream behind the shock is U, + U, - U ,  which can be either super- 
sonic or subsonic relative to C. 

For a symmetric wing at  zero angle of attack, the disturbed flow is symmetric 
with respect to the variable y. It sufices to consider only y 2 0. With E as the 
small thickness parameter, the linearized disturbance pressure, density and 
velocity components behind the shock will be denoted by ep', ~ p ' ,  cur,  EV' and EW' 
respectively. For the regions ahead of the shock, these disturbance quantities 
will be represented by the same symbols with subscript 0, namely, ep;, cp;, EU;, 

EVA and cw;. 
The linearized boundary condition on the plane of the wing is 

ev' = e(Ul+U,- U) fzo(xo ,z )  for xo < (Ul+Uo)t, (2.1) 

and ez(, = eU,fz,(xo,z) for xo > (Ul+Uo) t ,  (2.2) 

where xo is fixed on the wing surface and y = f (xo,  z )  represents the upper surface 
of the wing inside the planform S. Outside the planform S, f(x,, x )  vanishes. 

Since the shock front is moving with supersonic speed (M, > 1) relative to the 
undisturbed stream ahead of the shock, the presence of the shock will not in- 
fluence the flow field ahead of it. The flow field ahead of the shock is therefore 
a steady isentropic flow in variables x,, y, 2. The governing equations are, 

(2.3) i POUIUi = -PA, Po~l(v;)zo = - (P;)W 

Po u4),o = - (p;)z, CiP6 = Pi, 
(M2, - 1) (Pi),,z,- (P&U - (P&z = 0. 

The boundary condition (2.2) yields a condition for 
the region ahead of the shock is given by the integral, 

and the solution for 

For the subsonic case 31, = U,lC < 1, the domain of integration is the planform 
of the wing and v = 2. For the supersonic case M, > 1, the domain of integration 
is the part of the planform of the wing inside the hyperbola, 

5 < xo-{(M:- 1) r(z-g)2+y2]),t. 

For the region behind the shock, the flow field cannot be reduced to a steady 
flow and will be a function of time t and three variables x, y, z .  The co-ordinates 
are fixed on the undisturbed flow behind the shock. The linearized governing 
equations are, 

(2.5) 
p;+p(uj,+vj+w;)= 0, 

pu; = -p;, pv; = -pi ,  pw; = -p;,  p; = c2p;. 
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By straightforward elimination, it is found that the disturbance pressure fulfils 
the simple wave equation 

while the other quantities fulfil the equation (a/at) ( 0 9 )  = 0, where g stands 
for u’, v’, w’ or p’. 

With (2.6) serving as the governing equation for p‘ the next step is to state 
the initial conditions for the region behind the shock, i.e. x < Ut.  

If the wing is moving at subsonic speed (H, < 1) relative to the stream ahead 
of the shock, the initial conditions are 

p’(z < Ut, y, x ,  t )  + 0, pi(x < Ut, y, z, t )  + 0 as t+ - co. (2.7) 

p‘(z < Ut,y,z, t)+O, as (z2+y2+~2)~--tco. (2.8) 

The boundary condition at  infinity is 

For a stationary wing (U, = 0) or a wing moving with supersonic speed (U,/Co > 1) 
the initial conditions and the boundary condition at infinity can be sharpened 
but it is not necessary to impose these sharpened ones instead of (2.7) and (2.8). 

With xo related to z by the translation x,, = x + (U, + Uo - U )  t ,  the boundary 
conditions (2.1) and (2.5),  yield a condition for p i  

Pi@ < Ut,  o+, 2, t )  = -p(U,+ Uo- u)2fzozo(zo, 2 ) .  (2.9) 

Relative to the undisturbed flow behind the shock, the air in front of the shock, 
the wing and the shock front are moving with velocity - (Uo - U ) ,  - (U, + Uo - U )  
and U ,  respectively. The disturbed shock front can be expressed by the equation, 

(2.10) z = Ut + €$(y, 2 ,  t )  + 0 ( € 2 ) .  

Under the framework of linearized theory, the unit normal vector 2 and the 
shock velocity q 2  are related to $(y, x ,  t )  as follows, 

A 

(2.11) 1 ?L = .t”-€$,j-€$,Z, 
q.2 = ( U  + €$J i - eU$J - €U$& 

V’(X = Ut,  y, 2 ,  t )  = V&l = (U, + UO) t ,  y, 2 )  - (Uo - U )  $.,(Y, 2 ,  t ) ,  

The continuity of tangential components of velocity across the shock yields 

(2.12) 

w’(z= U t , y , ~ , t )  = W ; ( X O  = (U,+Uo)t ,y ,Z)-(Ci , -U)$~(y,z , t ) .  (2.13) 

Solution of the continuity, normal momentum and energy equation across the 
shock for p’, u’ and p’ yields 

C2p’(x = ut, y, 2,  t )  = (1 + Qo)p‘(2 = Ut,  y, 2 , t )  

pCu’(z = Ut,  y, 2 ,  t )  = Q,p‘(z = Ut, y, 2, t )  
+ fi,p;(xo = (U,+ 7x0) t ,  y, z),  

+ pCu&% = (U, + UO) 4 y, 2 )  

+fi&(zo = (Ui+Uo)t,y,z), (2.14b) 

(2.14a) 

p(U - Uo) $t(y,  2 ,  t )  = %P’@ = Ut,  Y, 2,  t )  

+ P(U- uO)u;(x, = (U, + UO) t ,  Y, 2 )  

+ Q2,p&o = (U,+ uo) t ,  y, 21, ( 2 . 1 4 ~ )  
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- (y -  1)  (M2- 1)2 

[2 + (y - 1) M 2 ]  ’ where Q, = M 2  

a1 = [ (3y- l )M2+3--] / [2+(y- l )M2] ,  
Q2 = - (1 - M2)/2M2, 

a3 = ( y  - 1) ( M i  - 1) ( I  - M2)/M2[2 + (y - 1)  M2], 

Q4 = - { y+  l+M,2[2(y- l)M2+3-y])/[2M2(y+ I)], 
Q5 = - [r- 3 - 2(y - 1) M 2  + (y  + 1)  M;(2M2 - 1)]/[2M2(y + I)]. 

By using differential equations (2.3), (2.5), (2.6), the boundary conditions across 
the shock x = Ut can be reduced to a single condition on p‘, 

5) 

K = - [(B, + B1)2 [Q, - BO/(BI M ) ]  + (M2, - 1)  [Q, - (M-l+ Mil) B,] MI, 

and D ,  is the linear differential operator defined as 

(2.16) 

The differential operator Dz,t is identical with that of the two-dimensional 
problem (Ting & Ludloff 1952). The inhomogeneous term is the contribution 
due to the disturbances created by the moving airfoil ahead of the shock. 

The boundary conditions along the shock and that along the body surface 
creates a discontinuity in pl/ at their intersection, i.e. x = Ut,  y = 0. Along the 
shock, (2.12) yields 

(U - U,) $k1/(0+, 2, t )  = d ( X  = Ut-, o+, z, t )  - v;(x, = (U, + U,) t+, o+, x ) .  

Since the velocity components are continuous on either side of the shock near 
its intersection with the body, (2.1), (2.2) and the preceding equation give 

( ~ - U o ) & ? t ( 0 + > z A  = (9+Uo)(Uo- ~ ) f , , z o ( ~ o  = ( 9 + - o ) t > z ) .  

From ( 2 . 1 4 ~ )  along the shock, the following is obtained: 

p i ( .  = U t , y  = O + , z , t )  = L4(7+ 1 ) - 1 p ( ~ i f U o ) + p o U ~ ~ ~ / ~ 2 1 f ~ o ~ o [ ( U o + U ~ ) ~ , Z ] .  
(2.17) 

On the other hand (2.1) implies 

ph(x= Ut-,y = O , Z , t )  = - p ( U ~ + U ~ - ~ ) 2 f z o z , [ ( U ~ + U l ) t , ~ ] .  (2.18) 

Equations (2.17) and (2.18) define the discontinuity in pb behind the shock at 
its intersection with the body. It should be pointed out that in the neighbour- 
hood ahead of the shock there is no such discontinuity in P ; , ~  since the solution 
p;  is not influenced by the presence of the shock. 

The moving front, x = Ut,  suggests the introduction of new variables Z, jj, 2 ,  i 
from the old variables by the Lorentz transformation (Ting & Ludloff 1952). 

(2.19) 
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The region behind the shock, x < Ut, becomes the region Z < 0. In  this region, 
the wave equation remains of the same type, 

p;*+p;g+p;z-p,;t = 0. 

The initial conditions are 

(2.20) 

P I = &  = 0, as $-+-a. (2.21) 

The boundary conditions become 

pl+O, as ZJ+ij2+22+m, 

p@, 0) z, t )  = pc~Aofxozo  [20 = a(t+Xo3), 21, 

i&pI(Z = 0, g > o,x, H) = Ep~oxo[xo = lit; g > O , f ] ,  

pk(Z = 0-, g = 0) z, E )  = pC%40fzoxo [xo = a, 21, 

&(Z = 0, g = o+, z ,  H) = pC2pfzox0 [xo = is, Z], 

a = (lZl + go)/( 1 - M2)+, go = uo/c, 
x, = M+(1 -N2)/(lZo+BJ, Bl = U1/C, 

and 

where 

A ,  = - (B1+Zo-N)2, 

p = -4M(2.@l+.@~)/(y+ 1) -!-N2,M!&/(.@,ofi2), 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

E = -2M(1-M2)-~{(lZo+al)2[fi4-ao/(MMl)] 

+M(M2,-1) [fi ,-(M-l+B~l)Bo]},  (2.32) 

and Q2, Q4, Q5 are defined by the equations following (2.14~). Equations (2.20) 
to (2.26) summarize the mathematical formulation of the problem. 

3. The analytic solution 
The solution for the wave equation, (2.20) subjected to the initial condition, 

(2.21), and the boundary condition a t  infinity, (2.22), can be related to its normal 
derivative on the plane = 0 by the Kirchhoff formula (Baker & Copson 1950), 

where 7 = [(Z - t;)2 + ?j2 + ( 2  - 5)2]4. The region where pL(Z, 0, g, E )  is non-zero will 
in general be bounded. 

For the left half of the plane y = 0 (x < 0)) p;  is given by the boundary con- 
dition, (2.23). For the right half of the plane y = 0 (2 > 0) pi is undefined. The 
next step is to  find a differential equation for pL(E > 0, O , Z , H )  such that the 
solution given by (3.1) fulfils the condition across the shock (2.24) and possesses 
the proper discontinuity at  Z = 0, i j  = 0 of (2.25)) (2.26). Prior to doing this, the 
inhomogeneous terms in the shock condition (2.24) will be removed by splitting 
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the pressure disturbance p’ into two terms, each of which is a solution of the wave 

(3.2) 
equation (2.20). 

p* is a solution of the type (3.1) yielding the inhomogeneous term in (2.24). 
In  the inhomogeneous term the pressure PA(“,, y, x )  is given by a steady flow 

solution of (2.4) with speed of sound C,. If the co-ordinate xo is related to x and 
then to 5 so that they represent the same point for all x,, the solution ph in the 
new variables will not fulfil the wave equation with the speed of sound C nor the 
equivalent equation (2.20). Since it is necessary only to reproduce the inhomo- 
geneous term at xo = (U, + U,) t or at  5 = 0 with f = Ct( 1 - ill2)&, a linear trans- 
formation xo = Z ( f + X * Z )  can be introduced with X* to be defined and 

pI = p+p*;  

Z = ( g o + g l ) / ( l - M 2 ) $ .  

The pressure p* is then defined by an integral of the type in (3.1), 

The constants A* and A* are defined by the condition, 

Dzrp*(5 = 0, j j , Z , f )  = E p ~ , z o r o ( ~ o  = ‘111, jj, Z). 

In the appendix it is shown that this condition is fulfilled if 

x* = [l- (Mz, - l)/Z”]:, 

A* = - ( M / X o )  Z z , I q [ Z W (  -A*)]. and 

(3.3) 

(3.4) 

(3.5) 

(3.5~) 

(3.5b) 

In the integrand of (3.4), f[?i(A*Z+i), X] represents an equivalent wing moving 
with velocity l /A*.  

Since the wing impinges on the shock at t = 0, the particular solution p* given 
by (3.4) fulfils all the boundary conditions and initial conditions for the region 
behind the shock for t < 0. For a wing moving at  supersonic speed (MI > I ) ,  
p* is identically zero behind the shock for t < 0. At subsonic speed (M, < l), 
p* gives the disturbance pressure behind the shock for t < 0. In either case, it is 
correct to write, 

p ’ = p *  and p = 0, for x < Mt (t  < 0). (3.6) 

After the impingement of the shock by the wing, f > 0, the solution p* alone 
will not fulfil the boundary condition at  ?j = 0, 5 < 0, (2.23). The additional 
contribution p should also fulfil the wave equation, (2.20), the initial condition 
(2.21) and the condition at  infinity (2.22). The remaining boundary conditions 
for p‘, (2.23) to (2.26), become respectively, 

po(Z < O , O , Z , i )  = pC2{Aof,n,o[Z(f+X~~),~]+A,f,n,,[~(t+X5.T;),~], (3.7) 

(3.8) 

(3.9) 

- 
D , i p ( Z  = 0, jj > 0, Z ,  f) = 0, 

- 
and pp(Z = 0-, = 0, X, f) = pC2[Ao + A5]fZoz,,(?if, Z), 

P,(X = 0, jj = 0+, X, f) = pC2[p + AS~f,oro(Uf, Z ) ,  (3.10) 

where A 5 -  - - A *  and X 5 = X * .  
The condition (3.8) across the shock for p is homogeneous and the solution for 

p will be obtained in the same manner as that for a two-dimensional stationary 
- 
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wing (Ting & Ludloff 1952). ji will be expressed in terms of pg  on the plane 
y = 0 by Kirchhoff's formula, 

(3.11) 

where ti = (&t+f-?)ii (i = 1,5), 

The unknown distribution 0, X, i )  ahead of the shock, 3 > 0, will be defined 
by the remaining boundary conditions (3.8) and (3.10). By observing the identity 
[g(<, Q i?- ?)/?Iz = - [g(& 6, i- F)/?I5 + [g&, 6,7)+ the differential operator 
Dz. l ,  is applied to ji, 

(3.12) 

where H ( X )  = l / M ; - z M X + P ,  

A,(L f) = Ilg(O+, 0, 6, i )  - F g W ,  025, q, 
A2(6' t )  = Fgz(O+, 0,6,Q -Pa,&-, 0,5, 

and f(Iv) means the fourth derivative off  with respect to its first argument. 
Boundary condition (3.8) implies that the expression (3.12) vanishes. This will 
be the case if, 

Bz&y3 > O , Z , f )  

= -pC2Z2(AOH( -Ao)  f (IV) [U(f- X o Z ) ,  XI + A6H(  - Xo)$'IV'[O(f- X53), Z]}/Z.n, (3.13) 

and A,(Z, i )  = - ZNA,, t ( 2 ,  t). (3.14) 

For the fulfilment of the boundary condition (3.10), it is necessary to specify 
the appropriate limit p g  as 3-t O+ along the 5-2 plane. The limit is defined by 
applying a kind of 'mean value theorem' for p g ,  namely, 

:~j ig(o+,o)z , i )+~,-(O-,O,z , i?)J  =Fg(O,O+,X,f). (3.15) 

The proof can be carried out in the same manner as that for the two-dimensional 
case (Ting & Ludloff 1952). A simple proof will be given here by splitting the 
solution p ,  and hence Ilg,  into even and odd solutions of 3. For the even solution 
there is no discontinuity in j ie ,g  across the z-axis in the Z-2 plane. The limit of 
F e , s  as 3-+ 0 is unique and is equal to the value on the left side of (3.15). The 
odd solution, FOdd, vanishes on the plane 3 = 0, therefore the derivative of ?jodd 
vanishes on the plane 3 = 0 for y > 0. From the sum of the even and odd solution, 
(3.15) is verified. 

With the aid of (3.15) and (3.9) condition (3.10) is replaced by the following 

(3.16) 
condition, p,(o+,o,z,i) = pC2(2p-Ao+A5)f ,o ,o[a t ;~] ,  

38 F L M  42 
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1JvZ(0+, O , Z , i )  = pC2%[4M(A0-p) +A5x5+A0X0]f,o,,,,[af,Z]. (3.17) 

The differential operator nzT which is the same as that in the two-dimensional 
problem (Ting 8t Ludloff 1956) is hyperbolic and can be written as 

p/az + x;,a/aq (a/az+X,a/aE). 
The unknown pV(2  > 0, 0, i), which satisfies the differential equation (3.13) and the 
boundary conditions (3.16) and (3.17), is obtained in the same manner as the 
two-dimensional problem (Ting & Ludloff 1952). It takes the form, 

&(Z > 0, 0,x, t )  = pc2 c Ajf~ozo[%(f-xjz), 31. (3.18) 
j = l , 2 , 3 , 4  

The constants Aj and Xj  are defined in § 4. 

4. The final solution and definitions of symbols 
The disturbance pressure behind the shock is given by 

where 'i; = [ ( z -&)2+ j j2+(~-c )2 ]~ ,  

& = ? i (&[+f - i ' )  (i = 1or5) ,  

tj = a( -X&+t-- 4 ( j  = 1 , 2 , 3 , 4 ) ,  

(C = (Bl + go)/( 1 - M y $ ,  A, = M + (1  - M 2 ) / ( Z o  + JrJ, 
A ,  = -A,H( -X,)/H(x,), x, = x,. 

H(X)  = x 2 -  2MX + M,2 = 0, M, = u,/c,, 
- A 5  = A* = R(M/Bo)~~(l-M~)/[(B,+Bo)~E(-X5)], 

As = (1 - ( N ;  - 1)  ( 1  -H2)/(Mo + M,)2)6, 

A, = A,, A ,  = - A5H( - X5)/H(X5) ,  
t* = Z(X*t+i-?), M, = u,/co, 

A ,  = - ( B l - B o - M ) 2 ,  M = U/C,  Bo = Uo/C, Bl = UJC, 
- - 

x,, x, are two roots of the quadratic equation, 

and A ,  and A,  are the solution of the two linear simultaneous equations, 

A , + A ,  = 2/L-A0-A,-A,+A,,  

&A, + &A3 = 4 M ( p  - A,) - AoXo - A,Al - A,X, - A 5 x 5 .  

and ,u are defined by the equations following (2.26). 
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In  (4.1), the last integral with coefficient A* is the disturbance pressure p*,  
induced by the equivalent wing to remove the inhomogeneous term in the shock 
equation induced by the disturbances ahead of the shock. The first integral with 
coefficient A ,  represents the disturbance pressure induced by the position of the 
wing behind the shock and the induced inhomogeneous terms on the shock 
condition are removed by its mirror image in the region ahead of the shock, i.e. 
the integral with the coefficient A ,  and x, = X,. The integral with the coefficient 
A ,  ( = - A * )  and X5 = x* cancels the normal velocity on the x-z plane induced 
by the presence of the equivalent wing behind the shock and similarly its induced 
inhomogeneous term is removed by its mirror image, the integral with coefficient 
A ,  and X, = -X5. The remaining two integrals with coefficients A ,  and A ,  are 
induced by the image source distribution ahead of the shock. With X, and X, as the 
two roots of the characteristic equation, the two integrals fulfil the homogeneous 
shock condition and the coefficients A ,  and A,  are chosen so that the final 
solution fulfils the condition of discontinuity at  the intersection of the shock 
with the wing surface. By the inverse Lorentz transformation, the pressure 
distribution in physical variables x, y, z, t is obtained. 

The density variation is obtained from the differential equation (2.5) and the 
boundary condition (2.14a), 

P"", y, 2, t )  = (1/C2) {P'(", y, z ,  t )  + Q,P'(", y,z, t = X / U )  

+ Q,P&J = (U, + U") " / U ,  y, ZI}. 

The shock shape is obtained from ( 2 . 1 4 ~ )  

J O  

where qi is the disturbance velocity potential ahead of the shock with uh = #O,ro .  

5. Reduction to quasi-steady integrals 
In the seven integrals in (4.1) the integration variables c and < are involved 

implicitly in the first argument of the steady source distribution function. In  
order to expedite the integration, the variable 5 will be replaced by the first 
argument of the source distribution function. After this transformation of 
variables, the last integral becomes a steady three-dimensional solution of an 
equivalent wing as shown in the appendix. The other six integrals will be reduced 
to quasi-steady integrals, i.e. the variable t appears explicitly in the limit of 
integration only. From the domains of integration for these new integrals, the 
boundaries of the disturbed regions behind the shock can be defined directly 
from the planform of the wing. The limits of integration for ( for the first two 
integrals in (4.1) are -co and 0 and for the next four integrals are 0 and co. For 
these two groups of integrals the transformation of variables will be discussed 
separately. 

38-2 
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With 5 = 8(&5+ f- F ) ,  i = 0 or 5, the first group of integrals becomes 

(4 (4 (4 
FIGURE 2. Transformation from 6 to [* or &: (a )  l/x < 1, 

( b )  l / X  > 1 ,  Em > 0,  (c) I/X > 1, trn < 0. 

Intermediate steps in the transformation are supplied in the first part of the 
appendix with the aid of figure 2. The second integral appears only when con- 
ditions in ( 5 . 5 ~ )  are fulfilled. The condition a&/afl < 0 a t  ( = 0 implies 

- 
h i + z / [ z 2 + F j 2 + ( 5 - - ) 2 ] 2 L  < 0. (5.8) 

(5.9) 

This is impossible if xi < 1 ,  i.e. iQi > 1 and 

0 < - Xi[p + (2- - 5)”4/( 1 -xi)& < z .  

Condition (5.9) in turn defines the limits Z & ci for 6 in the second integral. 
For the second group of integrals, the variable 6 is replaced by with 

Cj = a[E-r-Xjt] (j = 1 ,2 ,3 ,4 ) ,  

the second group becomes 
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where 

and 
xj = . (LXj.) ,  
= 1 + 3 ( 1  -X!), 

(5.10) 

(5.11) 

P and are defined by (5.3) and (5.4). The integrals are evaluated for 33 < 0; 
it is clear that a&./a$ = U [ ( Z - c ) / F - X J  < 0 for 0 6 6 < co. The negative sign 
assigned to the square root of the integrand is then cancelled by interchanging 
the limits. After the transformation of variables, (4.1) becomes 

Again F is defined by (5 .3) .  The domain of integration for the first group of 
integrals is the domain ? inside the hyperbola (figure 3), 

8 :  = a { ~ - [ Z 2 + ~ 2 + ( Z - - ) 2 ] g ) .  (5.13) 

The domain of integration for the second group, which is real under condition 
(5 .5c ) ,  is the domain ri bounded by the hyperbola B and the hyperbola, 

Hi:[=zi-{(&~-1)[ij2+(X-c)2]}k, for i =  0,5.  (5.14) 

Hi and B are tangential to each other at  ci = Z &. For the last integral, the 
domain of integration, I?*, is the entire c-c plane for N, < 1 and for N, > 1 
is the domain inside the hyperbola, 

H* : ( = z* - ((M2, - 1)  [ i j 2  + (Z - 5)"I)a. (5.15) 

From the definitions of Bj, xi and &, the following relevant results are obtained : 
(i) B0 = B, = (U,+ U,- U) /C  = Mach number of wing relative to the un- 

disturbed stream behind the shock. 
(ii) B2 > 1, g3 > 1, since X 2  < 1, & < 1 and they depend only on the strength 

of the shock, Mo. 
(iii) MI = B4 = B5 = Mach number of the wing relative to the undisturbed 

stream ahead of the shock. 
(iv) xo is a co-ordinate fixed on the wing and x5 and x* are the same co- 

ordinates fixed on the fictitious wing. 
(v) For 31, > 1, the hyperbolas H5 and H* are the same but the domain r5 

is contained inside I?*. 
The domains of integrations in (5.12) and the constant gi and v depend on 

whether the Mach numbers go and H, are greater or less than unity, i.e. they 
depend on the Mach number of the wing relative to the flow behind and to the 
flow ahead of the shock, respectively. The following are the three possible 
combinations for B0 and M,: 

(i) M, < 1, a0 < 1; (ii) M, < 1, a0 > 1 and (iii) M, > 1, go > 1.  
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The fourth combination, MI > 1 and Bo < 1,  as shown by the following in- 
equalities and identities, does not exist: 

[(Co+Uo- U)’-C’]/Cg = 2[(2-7)Mg+2iVO-  l][M$- 1]/[(7+ l ) X ~ ]  > 0,  (5.16) 
Z&,- 1 = (MICo+Uo- U - C ) / C  > (Co+Uo- U - C ) / C  > 0. (5.17) and 

For a given wing, the strength of the source distribution vanishes outside the 
planform S of the wing. The domains of integration for the integrals in (5.12) 
can therefore be reduced from the appropriate I”s to  their intersection with S 
(figure 3). 

Hi 

s 

(4 (b) 
FIGURE 3. Hyperbolas B and Hi (a )  for a point in G,, i.e. outside the domain of influence 

of the shock, ( b )  for a point in GI, i.e. in the domain of influence of the shock. 

Let Gl(t) designate the region in the half space Z 6 0, such that for any point 
5, ij, Z in G1(t) the domain of integration for the first group of integrals a t  the 
instant t i s  not zero, i.e. S n ? $. 0. S n F denotes the intersection of the planform 
S with the domain inside the hyperbola 8. For points in G,(t), the first group 
of integral p> which involves i explicitly will not vanish. Furthermore, the image 
of source distributions due to  the shock condition are contained only in the first 
group of integrals, therefore, domain G1(Q will be called the domain of influence 
of the shock. 

Let G,(t) designate the complement of Gl(Z) in the half space x 6 0, i.e. for 
any point 2, ij, X in G,, S n I’ = 0 and the first group of integrals vanishes, pOJ = 0. 
The remaining integrals depend on the combinations of Ml and B0. 

(i) For go < 1 and I@5 = Ml < 1,  co = c5 = 0, the group of integrals Po and po5 
vanishes. The disturbance pressure p‘ is given by the steady subsonic solution 
p* of the fictitious equivalent wing, i.e. 

p’ ( z ,  i j , Z , t )  = p*(x*, y,x),  for X, i j , Z  in G,(Z). (5.18) 

(ii) For a0 > 1 and I@5 = Ml < 1, co = 2 and r5 = 0, the first integral of the 
second group, Po, does not vanish. Since S n ? = 0, the boundary of the domain 

N 
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of integration I?,, n S will be composed of the boundary of the planform S and 
the hyperbola Ho. Neither of them depends on t explicitly. The integral Po will 
therefore be a steady solution in xo, y, z variables. 

= 2, both integrals Po and p5 in the 
second group do not vanish. The integral Po will have the same properties as that 
in the proceeding case. Similarly, p5 will be a steady solution in x5, y, z variables. 

The domain Gz can be further subdivided with regions where Po vanishes or p5 
cancels p*. The subdivisions for a general planform are presented in Gunzburger 
(1969). The basic principle for the subdivisions is illustrated in 9 6 for a simple 
planform with straight edges. 

(iii) For &f0 > 1 and M, > 1, go = 

6. Examples 
The theoretical results will be applied to a wing with a basic planform and 

thickness distribution as shown in figure 4. The leading edge is xo = kz and the 
two sides are z = 0 and z = B. The inclination of the upper surface is e,  i.e. 

C,,,, 
Mach cone from. 

Sonic sphere / GI, 

/ I  G ic 

Envelope of 
- 
Z disturbances ' 

due to leading 
edge 

FIGURE 4. Illustration of different regions for wing which is subsonic 
ahead of shock and supersonic with supersonic edges behind shock. 

faco(xo,z) = 1. The given planform has two corners, the vertex 0 at the origin 
of xo-z axes and the wing tip, T at (kB, B).  By superposition of the analytical 
solutions for this basic wing, numerical results for the pressure distributions 
and aerodynamic forces for more complicated wings are obtained and presented 
in 9 6 (iii). In  order to simplify the description for the various regions of 8 5 for 
the basic planform, it is assumed that at  the instant under investigation, the 
wing tip is still ahead of the shock, i.e. k B  > (V, + U,) t. The span B will not appear 
in the solution except inp*(x*, y, z )  when MI < 1. With the planform of the wing 
behind the shock having only one corner at  0, the boundaries of various regions 
will depend on the swept back k and the Mach numbers M, and B0. 
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(i) Definition of the regions 
The definition of various regions depend on the combinations of supersonic or 
subsonic Mach numbers Ml and A?, relative to the stream ahead and behind the 
shock and the swept back slope k of the leading edge with respect to the Mach 
cone and the sonic sphere. A special combination is described in detail in this 
section. Descriptions for all the other possible combinations can be found in 
Chow & Gunzburger (1969) and Gunzburger (1969). 

For the wing moving with subsonic speed relative to the stream ahead of and 
supersonic to that behind the shock (M,  < 1, M, > 1) and with a supersonic 
leading edge k < u( 1 -xi)&, the region of influence of the shock GI is composed 
of the hemi-sonic sphere G,, and the half cone, G,, with vertex at  the intersection 
of the leading edge with the shock T' (0 ,  O,Z/k)  and tangential to the sphere. The 
cone is the envelope of the sonic spheres created by the passing of the leading 
edge through the shock. The region G,, which is outside G, and behind the 
shock, can be subdivided to G,, and its complement G,,. In G,, the disturbance 
pressure is p* alone, induced by the subsonic disturbance created ahead of the 
shock. In  G,,, it is the sum of p* and Po, the steady solution for the wing alone. 

The boundary between G,, and G,, is, the Mach cone from the vertex of the 
wing and the Mach plane from the leading edge. The region G,, is composed 
of two subregions G20,3D and G,,,,,. G,,,3D is bounded by the Mach cone from 
the vertex 0, the sonic sphere and the half cone containing G,,. For the wing with 
a constant inclined surface, $5, in G,:,3D is the same as the steady conical solution 
and $5, in G2,, ,D is given by the constant value on a wedge with supersonic swept 
back. 

(ii) Evaluation of integrals and numerical results 
With f , a , o ( ~ O ,  z )  = 0 inside the planform, f,,,, becomes a &function and the 
double integrals in (5.12) can be carried out immediately and the line integrals 
with respect to 5 can be written as 

z -gk  & >  1, E <  0, 
1 

sin-I - - ~- 

( 4 ) i  [ (A@-  1)1]i' 
where 

L = k 2 + 1 - . @ ,  Z = k X + ( 1 + & f 2 ) z  and I =  [ ( X - k ~ ) ~ + k y ~ ] & .  
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For the last integral in (5.10) for p' ,  p*(x*, y, z )  becomes 

p* = - A * [ E ( I L ' * , ~ , z , ~ ~ , ~ ) - E ( I L ' * , ~ , ~ , M ~ , ~ ) ] / ( ~ ~ ) ,  for MI < 1, 

= - A*[E(x*, y, 2,  MI,  <+) - E(x*, y, 2, Ml, <-)]/77, for Nl > I .  

{+ and <- are the two roots of the equation, (x* - k<)2 - ( M ;  - 1)  [y2 + ( x  - <)2]  = 0 
with <+ 2 <. If c- < 0, [- is set equal to zero, and if {+ < O,p* is set equal to zero. 

of shock 
Region of 
3 0  steady 

X= - 1.41 
c -f '\v Leading edge 

FIGURE 5 .  Pressure coefficient for supersonic wing with supersonic edges 
( M  = 0.51, M ,  = 1.5, k = 0.75, ?J = 0, ~t = 1). 

For the first group of integrals, p J  is equal to zero in region G,; inside region G,, 

where [+ and C- with C+ 2 [-- are the < co-ordinates of the points where the leading 
edge = k[ intersect the hyperbola B. If [- < 0, it  is replaced by zero. 

The second group of integrals Po and & are non-zero only when the conditions 
stated in ( 5 . 4 ~ )  are fulfilled and then they are defined as follows: 

pi = - A&@(%%, y, 2,&, C$) - E@i, y, 2 ,  Jq, <m77 in G,, 
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pi = - Ai[E(Xi, y, 2, &, &+) - E(Xi, y, 2, at, [+) 

+ E(x$, y, 2,  q, C-) - E(Zi, y, 2, Bi> m l l n  in Ql, 

where i = 0 or 5 ,  C t ,  c; are the two roots of 

( x t - k g 2 - ( B ; -  l ) - [y2+(2 -~)2 ]  = 0 

with c: > iZ;. If [; < 0, it is replaced by zero. 

Region of 
influence d 
the shock 

0.1 

0.1 I 

I 
1 

FIGURE 6. Pressure coefficient for a subsonic wing 
( M  = 0.8, M I  = 0.25, k = 3, y = 0, ct = 1) .  

A numerical program is written to distinguish various regions and to compute 
from the sum of these explicit expressions for p*,  pJ, jio and ji5, the disturbance 
pressure p’ behind the shock. The program yields result for all t ,  i.e. it works also 
when the wing tip passes behind the shock. The program can also superpose 
several basic planforms. Numerical examples for all possible combinations of 
Mach numbers Ml and B0 and the swept back k and also for several composite 
planforms are given in Chow & Gunzburger (1969). 

Figures 5 and 6 show two of the numerical examples for the wings with a 
straight leading edge. The pressure distribution on the wing at  various stations 
of x are shown together with the various domains in x, y, z space. In  figure 5 
the Mach numbers of the wing with respect to the stream ahead and behind the 
shock are both supersonic (MI > 1, Bo > 1). 

The characteristics of the pressure distribution in various regions are quite 
obvious. The discontinuities in the slope of the pressure curve as it crosses the 
boundaries of various domains, e.g. the sonic sphere, the Mach cone, are quite 
obvious. In  particular, along the intersection of the wing with the shock, x = MCt, 
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the disturbance pressure is constant outside the Mach cone of the equivalent 
wing and is the value along a ray from the vertex T' of the conical solution. At 
T' the pressure is not single valued. It ranges from the two-dimensional value 
behind the oblique shock attached to the leading edge and the conical values 
along the rays from the vertex T' to zero ahead of the leading edge. In figure 6, 
the wing is moving at subsonic speed (M, < 1, Bo < 1) .  Outside the region G, 
the disturbance pressure is the subsonic steady solutionp*(x*, y, z )  corresponding 
to a wing moving at  velocity (1  - x*M)  C/(X* - M )  = U* in x-t variables. The 
pressure distribution behind the shock for t < 0 can be obtained from the present 
result by a translation of x co-ordinate, e.g. the pressure distribution at  the 
instant to > 0 at x = - 2Ct0 is the same as that at  x = - (2C - U*)  to at the instant 
1 = 0. 

(iii) Applications 
For a thin symmetric wing with an arbitrary planform and thickness distribution, 
the pressure disturbance behind the shock wave can be obtained directly from 
(4.1) or (5.12) by numerical evaluation of the double integrals. For wings designed 
for high-speed flight, the planform can be decomposed to several triangles and 
the inclination of the surface in each triangle is a constant. The pressure distribu- 
tion for such wings can be obtained by superposition of the explicit solutions 
given in 3 6 (i) and 3 6 (ii) for wings with the basic planform in the same manner 
as in the steady three-dimensional problems (Donovan & Lawrence 1957). 

For a wing at an angle of attack moving at  supersonic speed and with super- 
sonic edges relative to the stream behind the shock, the flow fields above and 
below the wing are not influenced by each other and by the flow field behind 
the trailing edge. The pressure distribution on the top and the bottom surfaces 
can therefore be computed by the analysis of this paper for wings with equivalent 
symmetric thickness distributions. 

Figure 7 shows the results of the calculations for a triangular plate at  an angle 
of attack and moving at  supersonic speed (M, > 1, Bl+Bo- M > 1 )  and with 
supersonic edges. Before the impinging of the shock by the wing (t < 0), the lift 
and drag on the plate are given by the steady flow solution in the stream behind 
the shock with Mach number M,, i.e. (Liepman & Roshko 1957) 

- 
Lo = D / c ~  = po U: Cp,,(X2/k), GPO = 2 ~ t / ( M :  - 1)4, 

where L and D are the lift and drag, X is the mid-chord length and 2 X / k  is the 
span. GPO is the spanwise mean of pressure coefficient, and is equal to the two- 
dimensional value (Donovan & Lawrence 1957). 

When the shock wave intercepts the wing, X / ( U ,  + Uo) > t > 0, the pressure 
distribution on the wing ahead of shock remains unchanged and that behind 
the shock is conical, i.e. p' is a function of x,/(Ct), y / (Ct )  and z/(Ct). The lift 
variation on the wing is 

L(t) = po U ~ C ~ , , { X ~ -  [(u, + u0) t]2}/k +pC4aJ(B1 + go) t 2 ,  

where 
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and p' is obtained from the explicit solution in $ 6  (ii) with a superposition of the 
latter's mirror image with respect to  the x 3  plane. The lift curve during this 
period is therefore a parabola as shown in figure 7. 

When the trailing edge has passed through the shock and intercepts the sonic 
sphere, X/(Ul  + Uo- U - C) > t > X/(Ul + .Yo), the lift is given by the expression 
L(t) = pC4aJ(X/Ct)  t2. The lift curve in this interval is not a parabola as shown 
in figure 7. 

When the trailing edge passes through the sonic sphere, t > X/ (U,  + Uo - U - G ) ,  
the wing is outside the domain of influence of the shock. The lift on the wing is 

2.5 

2.0 

1 *5 

1 

0.5 

0 
- 0.2 0 0:2 10.4 Ctlx 0.6 1 

Ctlx =0*865 
4 

C t l ~ =  0.365 
ia 

Ctlx= 0 

FIGURE 7. Lift and moment coefficients va. non-dimensionalized time for wing and super- 
sonic leading edges ( M  = 0.51, M I  = 1.5, k = 0.75). Wing Mach number = 1.5. Pressure 
ratio across shock = 7.3. CL = 9 k / i p n : x a ;  GM = d k / ~ p ~ ~ $ ;  a = angle of attack. 

there,fore a constant (figure 7) and is given by the steady supersonic solution 
with respect to the stream behind the shock with Mach number, Bl + Mo - M .  
Also shown is the variation of moment about the leading edge. 

Figure 8 shows the variation of centre of pressure. It moves forward from 
the 213 chord position in steady flow to about 0.46 and then finally returns to 
the 213 chord position after the trailing edge has passed over the sonic sphere. 
Figure 9 shows the pressure variation on a flat terrain in the shape of a pyramid 
when the shock wave has passed over it. The pressure distribution is obtained 
by superposition of the explicit solution in 5 6 (ii) three times corresponding to 
the three swept back edges with Ml = 0 and their images with respect to the 
x-y plane. Due to the symmetry with respect to the X+J plane the pressure 
distribution is shown for half of the pyramid ( z  > 0). The locations of the dis- 
continuities in the slope of the pressure curves which are pre-determined from 
the boundaries for various regions described before, are quite essential in drawing 
the pressure curves for computed data points. 
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I I  
a 

H" 

Q q ctlx 

FIGURE 8. Variation of centre of pressure vs. non-dimensionalized time for wing 
in figure 7. Wing Mach number = 1.5. Pressure ratio across shock = 7.3. 

Z - 
Relative position of shock 

and flat terrain 

FIGURE 9. Pressure coefficient on thin pyramid like obstacle on the ground after the 
shock wave has passed over it. ( M  = 0.51, M ,  = 0, k, = 0.5, k, = 2.5, k, = 0.) 
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Appendix. Reduction of an unsteady solution to a steady solution 
An unsteady solution of the wave equation (2.6) in the physical variables 

x, y, z, t with the speed of sound C is also a solution of the wave equation (2.20) 
in the Lorentz variables 5, Xj, Z, i? with the speed of sound equal to unity. For 
a planar source distribution moving with uniform speed l /X,  the solution of 
(2.20) can be written as 
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h-l is of course also the Mach number of the moving source distribution. In  the 
physical variables, it is moving with Mach number M, = ( 1  - XM)/(X - M )  and 
velocity M, C. Note that M, - 1 and (I/>) - 1 have the same sign. With x* as 
co-ordinate fixed on the source distribution, i.e. x* = x + M, Ct, it is quite obvious 
that the unsteady solution $ with respect to the stream behind the shock should 
be equivalent to a supersonic or subsonic steady solution &x*, y ,  z )  with the 
speed of sound C. A brief derivation of their equivalence will be given in 3 (i) of 
the appendix. In 3 (ii), a steady solution with respect to the stream ahead of the 
shock which cannot be equivalent to an unsteady solution behind the shock in 
the whole space, is made equivalent on a special plane, say the plane of shock. 

- 

(i) Equivalence of an  unsteady solution to a steady solution 

By replacing the variable [ by [* = a(X[+i-F), (A 1 )  becomes 

After expressing F in terms of [*, the denominator in the integrand becomes 

?{ag*/a,') = ?{a[X+ (5- [)/?I) = {(x* - [*)2 - ( M i  - 1) [g2 + (Z - (;)2])g, (A 3) 

with M2,-1 = a2(l-X2) and x* = a(i?+X?). (A 4) 

u = M,/(l-M2)*. (A 5 )  

Both x* and M, will agree with their physical definitions given before when 

The choice of the appropriate sign for the denominator and that of the limits of 
integration in (A 2) should be decided by the sign of a[* /a [ .  aE;*/ac > 0 for all [ 
if l/x < 1,  i.e. the motion of the source distribution is subsonic. c* increases 
monotonically from - 00 to co as [ does and (A 2) becomes 

For X-I  < 1, v = 2 and I'* is the entire [*-6 plane and #(x*, y ,  z )  represents 
a steady subsonic solution (Moo < 1). 

For the supersonic case, l / X  > 1, a[* /a [  has the same sign as ?-[-A?. They 
vanish at = tm and [* = [z ,  with 

.grn = ? - X{ [y2 + (2 - 5)2]/( 1 - XZ)}B, 6; = 2* - {(M: - 1) [g2 + ( 2  - 5)2]1)4. 

As [ increases from - 00 to [-;,,, [* increases from - co to Ez and the positive sign 
in (A 3) should be used. As [ increases from trn to co, E* decreases from [$& to - co 
and the negative sign in (A 3) should be used. For the supersonic case, X < 1 ,  
(A 2) again becomes (A 6) with v = 1 and I?* being thedomaininside the hyperbola 
x* - [* = ( (ML - 1) [y2 + ( z  - 5)2])4 and fi(x*, y, z )  represents a steady supersonic 
solution (M, > 1) .  Thus concludes the proof of the equivalence. 
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(ii) Matching of a steady solution ahead of the shock on the plane 
of the shock with an unsteady solution behind the shock 

The inhomogeneous term KpA,xoxo [x, = ut, ij > 0, Z] in the shock condition (2.24) 
is associated with a steady solution ahead of the shock defined by (2.4) with 
the speed of sound C,. The inhomogeneous term will remain unchanged if the 
variable xo which is fixed on the wing is replaced by a new variable x* which is 
related to 5, f by a linear transformation x* = a ( f + X * Z )  so that x* = x ,  = ?if 
on the plane of the shock 5 = 0. Elsewhere x* and x, are not the same. The 
constant A* is free to be defined. The condition of (3.5) that D8p* at Z = 0 
matches with the inhomogeneous term ~ p ~ , x o , z o ( z o  = ?if, ij, Z )  will be fulfilled if 
D,p*(E, ij, X, f) is identified with Eph,x.x.(x*, ij, Z) ,  i.e. 

where f(IV) means the fourth derivative with respect to the first argument. By 
comparison with (A 1) and (A 6), the constants A* and X* are defined, 

- 
A* = {l-(M~-l)(l-M2)/(Jrl+Jro)2p 

and A* = - (M/Bo)Jr;2E(l -N2)/[(Jr1+iir0)2H(-X*)] .  (A 8) 

When x* is related to 5, f and in turn to the physical variables 2, t ,  A*f(x*, z )  can 
be considered as a fictitious source distribution for an equivalent wing. From 
(A 8), it is clear that the equivalent wing moves with supersonic speed, l /X* > 1 
(or at subsonic speed, l/X* < 1) with respect to the stream behind the shock 
when the original wing is moving with respect to the stream ahead of the shock 
a t  supersonic speed, Ml > 1 (or subsonic speed Ml < 1). 

For the subsonic case A* given by (AS) is always real. For the supersonic 
case, Ml > 1, X* given by (A 8) can be imaginary or zero for certain combinations 
of Ml and M,. This possibility will be investigated. 

For a supersonic flow ahead of the shock, the radius of intersection of the 
shock and the Mach cone is R, = (Bl + @,) f/[(M2, - 1) (1 - M2)]*. The radius of 
the intersection of the shock and the Mach cone of the equivalent wing moving 
with Mach number l/x* in 5, tvariables is R* = f/( 1 - x*2).  A necessary condition 
for the equivalence of those two solutions in the plane of the shock is that 
R, = R*. R* has a lower bound f which is the radius of the sonic circle. When the 
radius R, is less than f, x* is imaginary. This means only that the solution cannot 
be represented by the type of (3.1). It does not mean that the mathematical 
problem stated at  the end of 9 2 has no solution. 

The condition for x* real is R, > f which is equivalent to the condition, 

[ ( Y - ~ ) ( M ~ - ~ ) ~ - ( ( ~ - Y ) I M ~  < ( ~ + 1 ) %  

+ {[2(7- 1) M i +  41 (xi - 1) [Mt+ (7- 1) Mi + I]}&. (A 9) 

The inequality holds for all values of Hl if M i  < 1 + [(3 - ~ ) / ( y  - l)]4, i.e. No < 3 
for y = 1.4 or the shock strength pip,  < 3.7. For stronger shock the inequality 
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defines an upper bound for MI, e.g. with pipo = 20, Mo = 4.16, MI < 4.50. It is 
clear that so long as the shock strength is less than 20, the proposed procedure 
for the removal of the inhomogeneous term works for wings moving at  super- or 
subsonic speeds. Indeed, in the soIution by transform method of the problem 
for a supersonic moving wing the same restriction was imposed by a statement 
in Arora (1968) which amounts to assuming (A*)2 > 0. 
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